Information and Software Technology 55 (2013) 301-319

Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Automated generation of test oracles using a model-driven approach

Beatriz Pérez Lamancha **, Macario PoloP®, Danilo Caivano ¢, Mario Piattini®, Giuseppe Visaggio ¢

2Software Testing Centre, Republic University, Montevideo, Uruguay
b Alarcos Research Group, Castilla-La Mancha University, Ciudad Real, Spain
¢ Dipartamento di Informatica, Universitd degli Studi, Bari, Italy

ARTICLE INFO ABSTRACT

Article history:

Received 15 November 2011

Received in revised form 16 August 2012
Accepted 21 August 2012

Available online 19 September 2012

Context: Software development time has been reduced with new development tools and paradigms, test-
ing must accompany these changes. In order to release software products in a timely manner as well as to
minimise the impact of possible errors introduced during maintenance interventions, testing automation
has become a central goal. Whilst research has produced significant results in test case generation and
tools for test case (re)-execution, one of the most important open problems in testing is the automation
of oracle generation. The oracle decides whether the program under test has or has not behaved correctly
and then issues a pass/fail verdict. In most cases, writing the oracle is a time-consuming activity that,
moreover, is manual in most cases.
Objective: This article automates two important steps in the test oracle: obtention of expected output and
its comparison with the actual output, using a model-driven approach.
Method: The oracle automation problem is resolved using a model-driven framework, based on OMG
standards: UML is used as metamodel and QVT and MOF2Text as transformation languages. The auto-
mated testing framework takes the models that describe the system as input, using UML notation and
derives from them the test model and then the test code, following a model-driven approach. Test oracle
procedures are obtained from a UML state machine.
Results: A complete executable test case at functional test level is obtained, composed of a test procedure
with parametrized input test data and expected result automation.
Conclusion: The oracle automation is obtained using a model-driven approach, test cases are obtained
automatically from UML models. The model-driven testing framework was applied to an industrial appli-
cation and has been useful to testing automation for the main functionalities in the system.

© 2012 Elsevier B.V. All rights reserved.

Keywords:

Software testing

Automated test oracle
Model-driven testing

UML state machine

Model to text transformation

1. Introduction

New paradigms in software development reduce the time
needed to obtain the software product, automating the generation
of code and reusing artefacts from other products. Software testing
must accompany these changes, reducing testing time both when
the system is developed and when the product is in the mainte-
nance phase.

In Model-Driven Engineering (MDE), models are treated as first-
class entities that are used to generate code automatically. In the
maintenance phase, when a change request is required, the models
are modified and the code is automatically re-generated. Since
manual testing is time-consuming and error-prone, the idea of
MDE can be applied to develop automatic tests from models: thus,

* Corresponding author.
E-mail addresses: bperez@fing.edu.uy (B.P. Lamancha), macario.polo@uclm.es
(M. Polo), caivano@di.uniba.it (D. Caivano), mario.piattiniQuclm.es (M. Piattini),
visaggio@di.uniba.it (G. Visaggio).

0950-5849/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2012.08.009

when a modification is made in the models, not only the code is
automatically re-generated, but also the test cases, which must
be ready to be re-executed.

Model-Based Testing (MBT) provides techniques for the auto-
matic generation of test cases using models extracted from soft-
ware artefacts [1]. We are interested in applying the MDE [2]
paradigm to testing. MDE considers models for software develop-
ment, maintenance and evolution through model transformation
[3]. We use the term Model-Driven Testing (MDT) to refer to mod-
el-based testing that follows the MDE paradigm, i.e., the test cases
are automatically generated from software artefacts through mod-
el transformations.

In previous works [4-6], we defined an automated model-driven
testing framework by means of two types of transformations:

1. Model-to-model transformation (M2M) to generate test models
from design models. This transformation takes UML 2.0 models
[7] as input and produces UML Testing Profile (UML-TP) models
[8,4].

http://dx.doi.org/10.1016/j.infsof.2012.08.009
mailto:bperez@fing.edu.uy
mailto:macario.polo@uclm.es
mailto:caivano@di.uniba.it
mailto:mario.piattini@uclm.es
mailto:visaggio@di.uniba.it
http://dx.doi.org/10.1016/j.infsof.2012.08.009
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

302 B.P. Lamancha et al./Information and Software Technology 55 (2013) 301-319

2. Model-to-text transformation (M2T) to generate test code from
test models. This transformation takes UML-TP models as
input and produces xUnit code through an MOF-to-text
transformation.

As result, a “test procedure” is obtained. A test procedure con-
tains instructions for the set-up, execution and evaluation of re-
sults for a given test case [2]. A test case contains a set of inputs,
execution conditions and expected results which are developed
for testing a particular system’s objective (such as exercising a gi-
ven path or verifying the compliance of a specific requirement) [2].
The actual result obtained by the test case is compared to the ex-
pected result through an “oracle”. An oracle is any (human or
mechanical) agent, which decides whether a program behaved cor-
rectly in a given test, and accordingly produces a verdict of “pass”
or “fail”. Behind this single idea, the oracle automation is a quite
interesting line of research: automatically determining the ex-
pected output of a program for any possible input.

So, this article presents a contribution to the automated gener-
ation of test oracles. This implies to add two elements to the test
case: one that takes the input test data and automatically calcu-
lates the expected result; and other that automatically obtains
the verdict comparing the actual and the expected result. Whilst
the actual result is obtained when the test case is executed in
the system under test, the main difficulty stems in obtaining the
expected result (mainly due the infinite set of possible input data
for each functionality to test). The inclusion of the oracle in the test
case is essential for finding errors in the System Under Test (SUT),
which is the main goal of testing [9]. Although the generation of
test data and sequences of instructions for setting up and execut-
ing test cases has a relatively high automation degree, no generic
mechanism exists to describe the oracle [10], and its description
is therefore difficult and expensive [11]. Thus, it is almost always
implemented by hand. For Baresi and Young [12] and for Bertolino
[10], an ideal oracle should verify the fulfilment of all system char-
acteristics, but avoid “over specification”. Otherwise, writing a
generic oracle could be as costly as manually creating an oracle
for each test case.

Our proposal uses UML state machines to describe test oracles.
UML notation is a widely known and applied standard in develop-
ment processes. Our previously defined MDT framework [4-6] is
augmented with automated test oracles. Since this is a standard-
ised framework based on UML notation, the use of UML state ma-
chines makes it possible to use the same notation for development
and testing. UML state machines are very useful to model the
behaviour of the most complex and critical components in ob-
ject-oriented software [13], which, in practice, is an essential
advantage for developers, and to improve the communication be-
tween developers and testers. These complex components are also
the most important for testing, so design models are reused in test
models to describe test oracles.

As case study, we use the Monica Mobile system, an application
for monitoring load sensors in trucks. Sensors periodically send
data to a mobile device that provides different kinds of visual
and audible information both to the truck driver (by means of
bluetooth communication) and to a central computer (by 3G mo-
bile technology). This behaviour can be easily modelled with a
UML state machine and used by designers, developers and testers.

Our approach takes advantage of the design model for generat-
ing test cases, thus preventing, as much as possible, the use of dif-
ferent artefacts by testers and developers. Therefore, this article
uses UML state machines specified by developers that are later
annotated by testers with testing information using a UML Profile.
Testers complete the description of the SUT, making possible to
automate the test oracle generation. Thus, where in previous works
we generated executable test cases in the form of execution sce-

narios loaded with test data, now those test cases are enriched
with oracle information proceeding from the associated state
machines.

Since this article extends a previously defined approach for
model-driven testing with the inclusion of automated test oracles,
it starts with a brief description of previous works. Then, Section 3
describes the oracle automation problem and explains why it is
important in the testing process. Section 4 presents how the
MDT framework is augmented with automated test oracles and
uses a Library system as its running example. Section 5 describes
the automated test oracle approach and how it was implemented
using a UML state machine. The whole approach was applied to
the Monica Mobile system, which, is described in Section 6. Finally,
related works are discussed and conclusions and future work are
outlined.

2. Model-driven testing framework

Although there are several approaches for model-based testing
[14,15], the adoption of model-based testing by the industry re-
mains low and signs of the anticipated research breakthrough are
weak [10]. Model-driven testing (MDT) refers to a model-based
testing that follows an MDE paradigm, i.e., the test cases are auto-
matically generated using models extracted from software arte-
facts through model transformations.

Using a model-driven approach, the automation is developed
through model transformations. This involves a source metamodel,
a target metamodel, and a set of transformation rules that describe
how the elements from the source metamodel are mapped into
elements of the target metamodel.

We have defined and implemented an automated framework
for model-driven testing (see Fig. 1) [5]. The main characteristics
of the framework are:

e Standardised: this is based on Object Management Group
(OMG) standards. The standards used are UML [7] and UML
Testing Profile [8] as metamodels, and the Query/View/Trans-
formation (QVT) [16] and MOF2Text [17] as standardised trans-
formation languages.

o Functional testing level: the framework generates the test cases
at the functional testing level using model-driven testing tech-
niques. Test case scenarios are automatically generated from
design models and evolve with the product until test code gen-
eration. System behaviour is represented in a design layer using
UML sequence diagrams.

Design models

UML Sequence UML Class
diagram

diagram
.-"i (1)

Test models

UML-TP test UML-TP test
behaviour architecture

-

Test Code

- Test
[xUnit c::g; case 1[architecture }
code

Fig. 1. Model-driven testing approach.

B.P. Lamancha et al./Information and Software Technology 55 (2013) 301-319 303

DataSelector DataPool TestComponent
-name : string sglector 1 [name: string dataPools |ame : string
-dataSelectorDefinition : string = -dataPoolDefintion : sting I -testC om ponentDefinition : string
1 1 dataP ool ’1
cgimponent
0.* elector p.* -
DataPartition parttion
-name : string 0. 0.’ 0.7
-dataPartitionDefinition : string Test Context Arbiter
-name : string arbiter|-Name : string
testCase 1 [testContextDefinition : strin -arbiterDefinition : strin
Test Case ﬂ 90 ~ 9
e— 0.* testConte = - -
-testCaseDefinttion : string i &
L ut
SUT
';?Jn_:_g: :trltng s 0.1 \J/behavior —
- efinition : strin ehavior
9 Behavior =
1 -name : string ehavior

behaviof |

behaviorDefinition : string

1

Fig. 2. UML-TP metamodel.

e Framework implementation using existing tools: no tools have 2.2. Transformations

been developed to support the framework; existing market
tools that conform to the standards can be used. The requisite

The model-driven approach is defined in two layers for testing:

is that the modelling tool can be integrated with the tools that test model and test code.

produce the transformations.

The following subsections explain the metamodels and the
transformations used for the framework implementation.

2.1. Metamodels

Three metamodels are used in the framework: UML 2.0, UML
Testing Profile and xUnit. The objective of UML 2.0 [7] is to provide
system architects, software engineers, and software developers
with tools for the analysis, design, and implementation of soft-
ware-based systems as well as for modelling business and similar
processes [7].

The UML 2.0 Testing Profile (UML-TP) [8] extends UML 2.0
with specific concepts for testing, grouping them into test architec-
ture, test data, test behaviour and test time. Fig. 2 shows an excerpt
from the UML-TP metamodel. The test architecture in UML-TP is
the set of concepts to specify the structural aspects of a test situa-
tion. It includes the Test Context, which contains the test cases (as
operations) and whose composite structure defines the test config-
uration. The test behaviour specifies the actions and evaluations
necessary to evaluate the test objective, which describes what
should be tested. The TestCase specifies one case to test the system,
including what to test it with, the required input, result and initial
conditions. It is a complete technical specification of how a set of
TestComponents interacts with a System Under Test (SUT) to rea-
lise a TestObjective and return a Verdict value [8].

xUnit is a family of frameworks, which enable the automated
testing of different elements (units) of software. These frameworks
are based on a design by Kent Beck, originally implemented for
Smalltalk as SUnit [18]. Gamma and Beck ported SUnit to Java, thus
creating JUnit.! From there, the framework was also ported to other
languages, such as NUnit? for.NET, PUnit for Python,? etc.

1 http://www.junit.org/.
2 http://www.nunit.org/.
3 http://punit.smf.me.uk/.

4

Model-to-model transformation (M2M): The input of this trans-
formation is the description of the SUT by means of UML
sequence diagrams to represent scenarios and UML Class dia-
grams to represent the static structure of the system. For each
scenario represented as a sequence diagram, a QVT transforma-
tion (arrow 1 in Fig. 1) produces a test model composed of, on
the one hand, a class diagram representing the test architecture
and on the other hand, a sequence diagram representing the
test behaviour whose involved objects correspond to instances
of the class diagram. These models conform to the UML Testing
Profile (UML-TP).

Model-to-Text transformation (M2T): This transformation takes
the testing models as input and produces executable test code
to test the system as output. According to the model-
independence principles of MDE, a test model can be translated
into executable test code for different development languages
and environments. In our case (Fig. 3), this is carried out by a
transformation written with the MOFScript tool,* which imple-
ments the OMG’s MOF model-to-text transformation [17]. Each
transformation defined with MOFSCript language is composed
of a texttransformation element, which is the main element that
transforms a model into text. It is composed of rules (similar to
a function). Each rule performs a sequence of operations or calls
to other rules in order to analyse the input models and generates
the desired text. A rule has a context type, which is a type of input
metamodel and can have a return element, which can be reused
in other rules and input parameters to perform the operations
defined in the rule. A texttransformation element can also have
an entry point rule. This is a special type of rule called main. This
is the first rule to be executed when the transformation is
executed and is responsible for executing the rest of the transfor-
mation rules.

http://www.eclipse.org/gmt/mofscript/.

http://www.junit.org/
http://www.nunit.org/
http://punit.smf.me.uk/
http://www.eclipse.org/gmt/mofscript/

304 B.P. Lamancha et al./Information and Software Technology 55 (2013) 301-319

£ S
Test
JUnit Java
Code |F System
-~/
)
NUnit Test .Net
Code System
_— —

Fig. 3. Test model to test code transformation.

3. Oracle automation problem

Automating the oracle means that the testing system must be
capable of including a mechanism in the test cases to give a coher-
ent pass/fail verdict by itself, which must depend on the input test
data and on the expected result. Then, given a function to test and
the input test data, the expected result is calculated automatically.
Fig. 4 shows the generic procedure to automate the oracle. The ora-
cle problem is the process to obtain the expected result for the test
cases and its automation is still an open issue in software testing
research. Using an automated oracle to support testing activities
can reduce cost of the testing process and its related maintenance.

A test oracle is defined to contain two parts: the oracle informa-
tion that is used as the expected output; and an oracle procedure
that compares the oracle information with the actual output [20].
Since manual and human oracles are costly and unreliable, auto-
mated test oracles are required to ensure testing quality while
reducing testing costs. Due to challenges in providing complete
test oracles, it can be expensive and sometimes impossible to pro-
vide a complete and reliable oracle.

Although much research has been done to provide test oracles
automatically (see surveys [12,19]), none of them completely auto-
mates all test oracle activities in all circumstances [19]. It is unli-
kely that there will ever be an ideal system for creating test
oracles. Instead, there are a variety of approaches that make differ-
ent compromises to produce test oracles that, though not ideal,
balance the trade-offs to provide useful capabilities [12].

The current state of MDT frameworks (defined in Section 2)
does not consider test oracles, since is a standardised framework
based on UML Models, this paper uses UML State Machine to de-
scribe the test oracle. Clearly, this solution only resolves the oracle
problem in those cases where the system behaviour can be mod-
elled as a state machine, but as was argued previously, a complete
solution for all systems is impossible at this time.

UML state machines can be used to express the behaviour of part
of a system, modelled as a graph composed of states and transi-
tions that are triggered by dispatching a series of (event) occur-
rences [7]. The main elements in a UML state machine are [7]:

e State: models a situation during which some invariant condi-
tion holds. The invariant may represent a static situation such
as an object waiting for some external event to occur. However,
it can also model dynamic conditions such as the process of per-
forming some behaviour.

Automated Expected output
Oracle
test case Compa- _Fault
input rator report
Actual output

Fig. 4. Automated oracle procedure (taken from [19]).

o Transition: this is a directed relationship between a source state
and a target state, which takes the state machine from one state
to another, representing the complete response of the state
machine to an occurrence of an event of a particular type. The
transition has three main elements: an event that specifies the
triggers that may fire the transition, a guard (a constraint that
is evaluated when an event occurrence is dispatched by the
state machine; if the guard is true at that time, the transition
may be enabled; otherwise, it is disabled) and an effect (speci-
fies an optional behaviour to be performed when the transition
fires).

In our approach, the oracle automation problem is resolved
using a model-based approach, where UML state machines are
augmented with specific information for testing using a UML
Profile for oracles. Later, these models are transformed using a
model-driven approach to obtain the oracle class that returns the
expected result. The following section explains how the MDT
framework is enhanced with automated oracles and Section 5
explains the implementation of the oracle automation proposal.

4. MDT framework enhanced with test oracles

In order to automatically include the oracle in the test cases, we
extended the model-driven testing framework presented in Sec-
tion 2 using UML state machines to represent the oracle informa-
tion. The objective is the automated generation of test oracles
from models describing the system functionalities through model
transformations.

Since the framework now includes UML state machines as an
essential element of test generation, the models dealt with in
Fig. 1 have been extended with the UML state machine metamodel
(Fig. 5). In the first step (arrow 2), the tester applies the oracle pro-
file to the state machine with specific information for testing.

The MOF2Text transformation (arrow 3) is completely auto-
mated: it takes a UML state machine stereotyped with and trans-
forms it into a class with the information to calculate the
expected result (i.e. the test oracle).

The following subsection explains how the model-driven test-
ing framework works to test a library system:

4.1. Running example: library system

A library system is used as the running example. This system
provides functionalities to find, reserve, borrow and renew items

Design models

UML Sequence UML Class :
[diagram]‘ diagram 1 UML State Machine
.“i (1) #(z)
Testing models

behaviour architecture with Oracle Profile

wyw)

Test Code
xUnit test case Toet
aad architecture
code

Fig. 5. Model-driven testing with oracle automation.

[UML-TP test][UML-TP test J UML State Machine

Class with oracle
method

B.P. Lamancha et al./Information and Software Technology 55 (2013) 301-319

in a library. The items can be books, CDs, magazines or movies.
Fig. 6 shows an excerpt from the Library UML Class diagram. The
borrower has a status that can be: normal, delayed (the borrower
returns the book late), suspended (the borrower returns the book
after the suspension days) or deleted.

Fig. 7 shows the Return Book scenario, where the customer de-
cides to return a previously borrowed book. The customer provides
the identification and the book copy, the system calculates the
days that the book was borrowed. To do that, the system first cal-
culates the borrower’s status and returns the status to the actor. If
the actor confirms the return, the system calculates the amount to
pay (if applicable) and returns this amount to the customer. The

| Borrowing

| Cgdate

[Cgg amount

ﬁ-"g setReturned ()
42 getBorrower ()
42 getBorrowDays ()
42 getBook ()
ﬁé getAmount ()

I

1 - borrower 1

} copy i

305

borrower only needs to pay if s/he returns the book after the al-
lowed days.

4.2. Test model generation

This section outlines the QVT transformation (labelled 1 in
Fig. 2). Taking the return book sequence diagram, to generate the
test behaviour from a functional testing point of view, each mes-
sage between the actor and the SUT must be tested [4]. For this,
the following steps in the test case behaviour are generated with
the QVT transformation:

«enumerations
[€’| BorrowerStatus
= normal
= delayed
= suspended
= deleted

| Book
[Eg bookID : String

] Borrower ‘

|_FiburrnwerID : Integer
[Eg name : String
[_F.state ! BorrowerStatus

" &, getBorrowerID () | getCopyld () | # getBookiD ()
*ﬁe getState {) 42, setavailable () 42, getPrice ()
f? setState {) 2, getAllowDays () 4 getDays ()
* 42, getBook () 42, getFine ()
| 4§ getStatus () 45 getSuspDays ()

— BookCopy _po0kp
[Eg copyID : String
=1 allowDays : Integer
= status : CopyStatus

=) bookMame : String
[Eg bookType : String
[Eg price : Integer
1| g fine : Integer

= «suspDays : Integer

Fig. 6. Excerpt of library system class diagram.

E’]returnBook

| % cicustomer

| QrI:ReturnInterFate || QrM:returnMngr

|] b:Baok ||] bc:BookCopy | |] r:Borrowing ||

] briBorrower |

l1: returnBook (borrower, copy)
2: returnCopy (client, c:&:y)

3 getDaysRJnted |

I -l

4 qatDaysRelﬂted 'D

7: getSuspDays ()

8: getSuspD: e
e getSuspDays ()

9: setState (state)

I
I
I
I e N
|
|

10: returnCopy (-, -)|

O TR B IR I]
11: returnBook (-, -) :|shate |

| 12: confirmReturn {) ||

3: confirmReturnCopy (J

|
|
|
|
|
|
|
gLC!
|
|

|

: 18: setAvailable ()
T

|

20: confirmReturnCopy{(|) : amount

21 confirmReturn {) : am _ll._'l'ﬁ """" Libhhth H

19: setReturned {) 0
|
|

i

Fig. 7. Return book scenario.

306 B.P. Lamancha et al./Information and Software Technology 55 (2013) 301-319

e Obtaining the test data: In the UML-TP, the test data required to
execute the test case is stored in the DataPool. The TestCompo-
nent asks for the test data using the DataSelector operation in
the DataPool.

Executing the test case on the SUT: the TestComponent simu-
lates the actor and stimulates the SUT. The TestComponent calls
the SUT functionality to be tested: i.e., TestComponent calls the
message to test in the SUT.

Obtaining the test case verdict: the TestComponent is responsi-
ble for checking whether the value returned for the SUT is cor-
rect, and uses the Validation Action for that.

Fig. 8 shows the automatically generated test case for the Re-
turn Book scenario. To understand the model, take the first mes-
sage from the actor to the system in Fig. 7. The message is:
returnBook (borrower, copy): state. Following the steps described
above:

e Obtaining the test data: to test this message, we need the input
data(client and copy) and the expected result (expected_state),
which are stored in the DataPool. They are recovered by a call
to the DataSelector ds_returnBook (client, copy, expected_state)
operation.

Executing the test case on the SUT: The TestComponent calls
the operation returnBook (borrower, copy) in the SUT, which
returns the actual result (state in this case).

Obtaining the test case verdict: once the operation is executed
in the SUT, the next step is to compare whether the expected
result (expected_state) and the result actually obtained from
the SUT (state) are equal. This is represented with the sentence
{expected_state==state} in the validation action.

The same steps would be automatically generated for other
messages from the actor to the SUT, such as the further call to con-
firmReturn (): amount.

=4 returnBonk_testJ

E customer_TComponent: «TestComponent»
customer_TComponent

«DataSelectors
l 1: ds_returnBook { -, -, -)

4.3. Test code generation

This section outlines the transformation from test model to test
code (labelled 2 in Fig. 2). The MOFScript transformation takes the
test model as input and, for each UML Interaction (i.e. sequence
diagram) stereotyped as <TestCase>>, transforms it into a xUnit
test method. To illustrate this transformation we use Java and its
corresponding test language JUnit.

Listing 1 shows the JUnit test code generated for return book
(Fig. 8), the class described is a TestContext; in the UML-TP this
class is responsible for invoking the test cases (in this case, the test
method). Basically, the transformation creates the header of the
method (lines 1-7) and calls the DataPool to obtain the test data
(line 9). We are interested in testing each test procedure with more
than one data value. For this, the transformation creates a loop to
iterate with the test data within the test scenario (lines 10-23). In-
side the for loop, the dataPool first returns a vector with four ele-
ments: clientds_returnBook and copyds_returnBook (lines 11 and
12) are the test input data. The expected result is also stored in
the dataPool, which is retrieved as amountds_returnBookand stat-
eds_returnBook (lines 13 and 14).

Next, the returnBook method of the SUT is called (line 15) with
the test data retrieved from the DataPool. The result returned by
the SUT is compared to the expected result, as defined in the vali-
dation action (line 18). The same occurs for the confirmReturn
method (line 20) and its validation action (line 22). More informa-
tion about the semantics of the transformations from test models
toxUnitcode and about how MOFScript transformations were
developed can be consulted in [6].

4.4. Test oracle motivation
It is important to note at this point that in Listing 1, the ex-

pected result was manually calculated by the tester and stored in
dataPool. Following the UML-TP, each test case procedure (i.e. a se-

E returnBook_Datapool: «Data «5UTs
Pool»returnBook_Datapool E returninterface:
ReturnInterface

| 2: ds_returnBook (client, copy, expected_state)

3: returnBook (client, copy)

| 4; returnBook (-, -) : state

==Validation Action==
{state==expected_state}
I «DataSelector»

| S: ds_confirmReturn (-)

6: ds_confirmReturn { expected_amount)

I?: confirmReturn {)

|B: confirmReturn {) : amount

==Validation Action=>
{amount==expected_amount}

Fig. 8. Automatically generated test case for return book scenario.

B.P. Lamancha et al./Information and Software Technology 55 (2013) 301-319 307

1. import java.util.Vector;

2. import junit.framework.TestCase;

3. import Library.Returninterface;

4. public class ReturnBook_TestContext extends TestCase {

5. [//Atributes

6. private Returninterface returninterface;

7. public void testRetumBook_test(){

8. /IAsk the data from DataPool

9. Vector<ValueSet> v = returnBook_Datapool.getreturnBook_test();

10. for(ValueSet vs:v){

11 String clientds_retumBook = (String) vs.getValue("clientds_returnBook");
12. String copyds_retumBook = (String) vs.getValue("copyds_returnBook");
13. String stateds_retumBook = (String) vs.getValue("stateds_returnBook");
14, Integer amountds_confirmReturn = (Integer) vs.getValue("amountds_confirmReturn");
15. /ICall retumBook in SUT

16. String state = returninterface.returnBook(clientds_returnBook, copyds_retumBook);
17. /IValidation Action for returnBook

18. assertTrue(stateds_returnBook.equals(state));

19, /ICall confirmReturn in SUT

20. Integer amount = returninterface.confirmReturn();

21. /Nalidation Action for confirmReturn

22, assertTrue(amountds_confirmReturn.equals(amount));

23. }

24. }//End testReturnBook_test

25. }// End of class returnBook_TestContext

Listing 1. JUnit automatically generated test code.

quence diagram) which corresponds to an execution scenario, has
one or more associated tuples in the DataPool in order to test it. Be-
sides the input test data, these tuples also have the expected value.

Taking return book as the scenario to test, the test inputs are the
borrower and the copy. The result is the borrower state and the
amount to pay. If the oracle is not automated, the expected result
must be manually calculated by the tester and stored in the
DataPool.

Fig. 9 shows an example of the test data stored in the DataPool.
In TestCase 1, bperez borrows book copy XR2011A. When she re-
turns the book and the return book scenario is executed, the total
days borrowed is 6. Up to now, the tester must manually calculate
the expected_state (delayed) and the expected_amount (10), and then
store them in the datapool (last two rows in Fig. 9). When the test
case is executed, the expected result is compared with the result
returned by the system.

Calculating the expected result for each test case by hand is a
tedious and error-prone task. To deal with a large number of cases,
a UML state machine can be provided with the functionality to ob-
tain the expected result. Note that the state of a UML classifier can
be described as a function of its attributes and that, thus, the se-
quences of messages represented in an interaction diagram modify

Test Case 1 |Test Case 2
BOITOWar borrowerID bperez mpolo
state norma;l delayed
copylID : XR2011A SP2010B
Book Copy|allowDays 5 3
bookID XR2011 SP2010
bookID XR2011 SP2010
Book |price 10 12
fine . 0,15 0,1
borrowerID bperez mpolo
Borrowing|copyID XR2011A SP2010B
BorrowDays 6 2
expected amount 10 0
il expected_state delayed normal

Fig. 9. Example of input test data stored in DataPool.

the states of the objects involved in the scenario, according to the
corresponding state machine.

Fig. 10 shows the UML state machine for the borrower status
(normal, delayed and suspended) when a book is returned. Transi-
tions have three variables in their guards: daysBorrowed (number
of days that the borrower has the book), allowedDays (number of
days that the book can be borrowed) and suspDays (sanction days
when the book is not returned on time).

Also, it uses three variables in the effects of the transitions:
amount (represents the total amount the borrower must pay if
the book is returned late); price (amount to pay for these books);
and fine(fine per day to apply to this book). The meaning of each
transition is the following:

e t1: When the borrower status is normal and the days borrowed
exceeds the allowed days, the borrower status changes to
delayed and the amount to pay is the price.

t2: When the borrower status is normal and the days borrowed
are fewer or equal to the allowed days, the borrower status
remains normal and the amount to pay is zero.

t3: When the borrower status is delayed and the days borrowed
are fewer or equal to the allowed days, the borrower status
changes to normal and the amount to pay is zero.

t4: When the borrower status is delayed and the days borrowed
exceeds the allowed days, the borrower status remains delayed
and the amount to pay is price + fine = daysBorrowed.

t5: When the borrower status is delayed and the days borrowed
exceeds the suspension days, the borrower status changes to
suspended and the amount to pay is price + fine » daysBorrowed.
When a borrower is in a suspended state, s/he cannot borrow a
book.

This state machine is in the design layer (see Fig. 5) and is also
used to automate the test case oracle, producing a method to be
used in test cases. The following section explains how the UML
state machine is used to obtain the expected result in an auto-
mated way instead of using a manual procedure, which is the main
contribution of this work.

308 B.P. Lamancha et al./Information and Software Technology 55 (2013) 301-319

[BorrowerStates

t1[daysBorrowed>allowDays]famount = price

t4[daysBorrowed>allowDays]famount = price + fine*daysBor

@8 Amount1

v t3[daysBorrowed <=allowDays]/amount ==

@& Amount4

G delayed

@@ Amount3

LS[daysBorrowed>suspDays)famount = price + {fine*daysBc

t2[daysBorrowed <=allowDays]famount == 0

@ Amount2

@ Amounts

& suspended

Fig. 10. UML state machine for the borrower states.

5. Automated test oracle implementation

To better understand our proposal for automated test oracles,
the high-level view of the automated oracle process presented in
Fig. 4 has been extended. Fig. 11 describes the way in which the
test case verdict is obtained using the metamodels defined in the
model-driven testing framework (see Fig. 5).

To automate the generation of oracles, the UML state machine
must be augmented with specific information for testing. For this
reason, a UML Profile for Oracles is defined to be applied to UML
state machines.

Fig. 12 specifies the steps to obtain the oracle method from a
UML state machine. The addition of the profile elements is a man-
ual task performed by the tester. Once the UML state machine with
the Oracle profile is obtained, the state machine is automatically
transformed using MOFScript. This transformation returns a class
(in the language used to implement the SUT) with two methods:
one that returns the expected state and another that returns the
expected result.

This approach has been standardised and made UML compliant
so that existing tooling can also be used for oracle automation. The
same UML editor used to describe UML sequence diagrams and
UML class diagrams is used to describe UML state machines. Also,
UML tools provide functionalities to define and apply UML Profiles.
Specifically, examples in this work are depicted using IBM Rational
Software Architect.’

The following subsections explain the steps in Fig. 12 in detail.
First the UML Profile defined for test oracles is explained, then, the
MOFScript transformations to obtain the oracle class are described.
Finally, the automatically generated code for test oracles is
presented.

5.1. UML profile for oracle determination

First of all, it is necessary to know when a UML state machine
represents an oracle and when it represents the system behaviour.
We define a profile that complements the UML-TP to automate the
oracle.

Fig. 13 shows the stereotypes defined in the profile. The seman-
tics for the stereotypes in the profile are explained below using the
UML state machine for the Library example in Figs. 10 and 14 show
the resulting UML state machine.

5 http://www.ibm.com/developerworks/rational/products/rsaj.

exercises

enerates
[S[;g;z\;e - Test Case
v

test case input

Actual output

DataPool

State
Machine
r

test case input

generates

Expected output

Fig. 11. Automated test oracle proposal.

Fig. 12. Oracle automation proposal.

e TestOracle: a UML state machine that defines an oracle has the
stereotype <TestOracle>. Fig. 14 is stereotyped <test oracle>>.

e Preconditions and post-conditions: depending on the transition,
states can be considered as pre- or post-states. For example,
Fig. 10 has three states: normal, delayed, suspended. Normal
and delayed are pre-states, because the borrower must be in
one of these states to borrow a book. Likewise, states can also
be post-states for some transitions: in the example, the three
states can be post-states. Depending on the role, states are ste-
reotyped as <precondition>> or < postcondition>>.

e TestPrecondition: As noted in Section 3, a UML state machine
uses variables in the guard and effect clauses. We need to know
how to obtain these variables from the dataPool to generate the
oracle. This information is missing in the UML state machine
and is necessary to obtain the test oracle. TestPrecondition is
defined in a UML Comment stereotyped as < TestPrecondition>s,
which is attached to the UML State Machine. The UML Comment
stereotyped as < TestPrecondition>> may have different tags to
obtain the data for the oracle (see Figs. 14 and 15). The text inside

http://www.ibm.com/developerworks/rational/products/rsa/

B.P. Lamancha et al./Information and Software Technology 55 (2013) 301-319 309

Stereotype Applied to Semantic

State Indicates that the UML state machine
Machine |represents an oracle for testing
Indicates that the state can be a initial
state for testing
Indicates that the state can be a final
state for testing
includes information about how the
<<TestPrecondition>> | Comment [|variables used in the state machine are
configured

<<testOracle>>

<<precondition>> State

< <postcondition>> State

Fig. 13. UML profile defined for oracle automation.

<<Test Oracle>>
(s BorrowerStates t1[daysBorrowed>allowDays Jfamount ==price 41 daysBorrowed>allowDays]famount == price + fine*daysEo...
.[Amount 1 @ Amount4
«precondition, postconditions «postcondition, precondition»
@@ normal & delayed
t3[daysBorrowed<=allowDays]famount == 0) y
@ Amount3 tS[daysBorrowed>suspDays]famount == price + (fine*daysB...
t2[daysBorrowed <=allowDays]famount == @ AmountS
B Ao = «TestPrecondition» [BN
‘gﬂm <Input> Borrowing r </Input>
<Qutput> Integer </Output>
<Variable> int daysBorrowed = r.getBorrowDays();
Borrower b = r.getBorrower();
BookCopy be = r.getBook();
Book bk = be.getBook();
int allowDays = bk.getDays();
Int suspDays = bk.getSuspDays();
Int price = bk.getPrice();
Int fine = bk.getFine(); </Variable>
<State> String prestate = b.getState().toString(); </State>
Fig. 14. UML state machine using the UML profile defined for oracle automation.
the tags is written using the same programming language that - Input: The information between (Input) and {(/Input) are
uses the system under test, in the case of Library example, the input parameters for the oracle method. For the example, a
text is written using Java language. The possible tags are: Borrower is needed as input.
— Output: The information between (Output) and (/Output) is
the type that returns the oracle method. For the example,
~ <Test Precondition> > this state machine returns an Integer value.

- Variable: The information between (Variable) and (/Vari-
<Input> Borrowing r < /Input> able) are variables that are used in the state machine. For
<0ut.put> Integer </Output> the example, it must be known how to obtain daysBorrowed,
<Yat“3bl‘f§ g B b) allowDays, suspDays, and other variables used in Fig. 10.

b daysBorrowed = -getBOITow ays(); - State: The information between (State) and (/State) is used
Borrower b = r.getBorrower(); . e . .
BookCopy be = r.getBook(); to obtain the initial state. For the example, the information
Book bk = be.getBook(); about the current state for the Borrower b is obtained using
int allowDays = bk.getDays(); the function b.getState ().toString ().

int suspDays = bk.getSuspDays();
int price = bk.getPrice();

int fine = bk.getFine(); . .
& 0 5.2. Transformation to obtain oracle methods

< /Variable>
<State>

String prestate = b.getState().toString(); The implementation of the oracle method is performed through
< /State> a model-to-text transformation (M2T). As input, it takes a UML

state machine stereotyped as «TestOracle>> and returns a class
Fig. 15. UML comment attached to BorrowerStates (see Fig. 14). in the same language as the SUT with two oracle methods:

310 B.P. Lamancha et al./Information and Software Technology 55 (2013) 301-319

1. A method to return the result: this method calculates the pre-
state and, depending on its value, evaluates the guard and
returns the effect corresponding to this guard.

2. A method to return the post-state: this method returns a string
representing the post-state.

MOFScript Transformations: Listing 2 shows an excerpt from
the Model2Text transformation using MOFScript language. The
main rule is applied to UML state machines stereotyped
<TestCondition>> (lines 1-4). This main rule calls the mapClass
rule (lines 5-9) that creates the text file, the header of the oracle
class and calls the rules addOracleState () and addOracleResult ().

As depicted in Fig. 12, the result of executing the MOFScript
transformation is a Class with two methods. Taking the UML state
machine for the Library System in Fig. 14 as example, the Java
method presented in Listing 4 is obtained from the addOracleState
() rule.

The addOracleState () rule (lines 10-36 in Listing 2) generates
the method that returns the expected post-state. First, the transfor-
mation loads the information stored in the UML Comment stereo-
typed «TestPrecondition>> (lines 13-16); as a result, lines 1-11 in
Listing 4 are generated. The transformation takes each stereotyped
state as a precondition (lines 17 and 18 in Listing 2) and, for each
guard, generates the corresponding text code. Listing 4 shows the
generated code (lines 12-29).

Listing 3 shows the addOracleResult () rule. This rule is similar to
addOracleState () but generates the method that returns the ex-
pected result, depicted as an effect in the state machine. For each
state stereotyped as <Precondition>>, the corresponding effect is
generated (lines 14 to 24) as a text code result for the method. List-
ing 5 shows the java method generated to obtain the oracle result.

5.3. Actual versus expected result comparison

Listing 1 showed the JUnit code without the oracle for the UML
sequence diagram in Fig. 8. The MOFScript transformation from the
test model to xUnit code also needs to be changed. Now, the trans-
formation has taken into account that there is a UML state machine
stereotyped <TestOracle>> related to the UML sequence diagram.

Listing 6 shows the new code generated: now, only the test in-
put needs to be recovered from the datapool (lines 9 and 10). Due
to the fact that the state machine in Fig. 14 is associated with the
return book functionality, the transformation takes the data from
the UML comment attached to the state machine. This input is
Borrowing b, so this value is also returned by the dataPool as
bds_oraclelnput (see line 11). Now, the expected state and the
amount are requested from the oracle methods. Line 16 requests
the expected state and line 17 requests the expected result
(amount), passing as parameter bds_oraclelnput in both cases.

Each operation is called in the SUT obtaining the actual result
(lines 20 and 26). Finally, the comparison between the expected

1. uml.StateMachine::main(){

2 if(self.hasStereotype("testCondition")){

3. self.mapClass()}

4. }

5. uml.StateMachine: :mapClass() {

6. cen

7. self.addOracleState()

8 self.addOracleResult()

9. }

10. uml.StateMachine: :addOracleState(){

11.

12. self.ownedElement->forEach(r:uml.Region){

13. r.ownedComment->forEach(cm:uml.Comment | cm.hasStereotype("TestPrecondition")){
14. //Load Input and Output parameters, Variables and States specified in the Comment
15.

16. }

17. r.ownedElement ->forEach(s:uml.State){

18. i1f(s.hasStereotype("precondition")){

19. <%\n if (prestate.equals("%> s.name <¥%")){ %

20. r.ownedElement -> forEach (t:uml.Transition){

21. if (t.source == s) {

22. t.ownedRule -> forEach (g:uml.Constraint){

23. g.ownedElement -> forEach (o:uml.OpaqueExpression){
24. String body = o.body

25. <¥\n if (%> body.substring(l, body.size()-1) <¥) { %
26. <% poststate = "%> t.target.name <¥"; %>

27. }

28. }

29. }

30. }

31. }

32. }

33. <¥\n return poststate;%

3. <6\n } %

35. }

36. } //0Oracle State

Listing 2. MOFScript transformation.

B.P. Lamancha et al./Information and Software Technology 55 (2013) 301-319 311

27. <%\n return result = null;%
28. <%\n } %

}
30. } //OracleResult

1. uml.StateMachine::addOracleResult(){

2

3 self.ownedElement->forEach(r:uml.Region){

4 r.ownedComment->forEach(cm:uml.Comment | cm.hasStereotype("TestPrecondition™)){
5. //Load Input and Output parameters, Variables and States specified in the Comment
6 il

7

8 r.ownedElement ->forEach(s:uml.State){

9. if(s.hasStereotype("precondition")){

10. <%\n if (prestate.equals("%> s.name <¥%")){ %

11. r.ownedElement -> forEach (t:uml.Transition){

12. if (t.source == s) {

13. t.ownedRule -> forEach (g:uml.Constraint){

14. g.ownedElement -> forEach (o:uml.OpaqueExpression){

15. String body = o.body

16. <¥\n if (%> body.substring(l, body.size()-1) <¥) { %>
17. }

18. }

19. String effect = t.effect.body

20. <%\n result - % effect.substring(l, effect.size()-1) <¥; %
21 <\n } %

22. }

23. }

24. }

25. }

26. }

Listing 3. Rule addOracleResult.

1 public String BorrowerStates_oracle_state (Borrowing r) {
2 String poststate = "";

3 int daysBorrowed = r.getBorrowDays();

4, Borrower b = r.getBorrower();

5. BookCopy bc = r.getBook();

6 Book bk = bc,getBook();

7 int allowDays = bk.getDays();

8 int suspDays = bk.getSuspDays();

9. int price = bk.getPrice();

10, int fine = bk.getFine();

11. String prestate - b.getState().toString();
12, if (prestate.equals("normal")){

13. if (daysBorrowed>allowDays) {
14, poststate = "delayed";

15. }

16. if (daysBorrowed<=allowDays) {
17. poststate = "normal”;

18. }

19. }

20. if (prestate.equals("delayed")){
21. if (daysBorrowed<=allowDays) {
22. poststate = "normal";

23. }

24, if (daysBorrowed>suspDays) {
25. poststate = "suspended”;
26.

27. if (daysBorrowed>allowDays) {
28. poststate = "delayed";

29. }

30. }

31. return poststate;

32.}

Listing 4. Oracle state automatically generated.

and actual results is done using the Assertion sentence in JUnit
(lines 23 and 29), as depicted in Fig. 11. The tester could use the
functionalities that bring the xUnit framework to manage defects
and re-execute the test cases. If the defects is due to an error in
the oracle procedure, the tester or the designer only need change
the UML state machine, execute again the model transformation
that obtains the test oracle procedure and re-execute the test cases
again using the xUnit framework.

6. Case study: Monica Mobile system

Empirical studies are necessary in real environments if we are
to deepen the knowledge and validity of the application of Soft-
ware Engineering practices [21]. A Case study explores a phenom-
enon within its real context, especially when the boundaries
between phenomenon and context are not clearly evident [22].
According to Runeson and Host [21], the steps to follow in a case
study process are: (i) Case Study design and planning, (ii) Prepara-
tion of data collection (definition of procedures and protocols for
data collection), (iii) Collecting evidence, (iv) Analysis of collected
data, and (v) Reporting.

This section explains how each step was carried on for the Mon-
ica Mobile system.

Case study design: The objective of the case study is to evaluate
the application of a model-driven testing framework to automate
the generation of complete test cases, what includes the corre-
sponding oracles, in order to improve the testing process in
model-driven environments. The case study analyses Monica
Mobile, a system for monitoring and controlling the conditions of
the load transported in a truck developed. This system has been
developed by the Ser & Practices company. It was selected because:
(1) during its development, UML diagrams and tools were used; (2)
Ser & Practices is a spin-off of Bari University (Italy) and, thus, it is
really interested in the integration of the best research results in
their software projects. The data collection is obtained using tool
instrumentation and the units of analysis were selected to fit the
specific objectives of the case study. The main sources of data were
collected interviews and analysis of code and of technical
documentation.

Case study protocol: Action-research is the manner in which to
meet the required conditions, to learn from our own experiences
and make them accessible to others [23]. It is a qualitative research
method that brings theory and practice, and researchers and prac-
titioners together to solve a problem [24], and that we have

312

B.P. Lamancha et al./Information and Software Technology 55 (2013) 301-319

1. public Integer BorrowerStates_oracle_result (Borrowing r) {
2. Integer result = null;

3. int daysBorrowed = r.getBorrowDays();

4. Borrower b = r.getBorrower();

5. BookCopy bc = r.getBook();

6. Book bk = bc.getBook();

7. int allowDays = bk.getDays();

8. int suspDays = bk.getSuspDays();

9. 1int price = bk.getPrice();

10. 1int fine = bk.getFine();

11. String prestate = b.getState().toString();
12. if (prestate.equals("normal™)){

13. if (daysBorrowed>allowDays) {

14. result = price;

15. }

16. if (daysBorrowed<=allowDays) {

17. result = @;

18. }

19. }

20. if (prestate.equals("delayed")){

21. if (daysBorrowed<=allowDays) {

22. result = @;

23. }

24. if (daysBorrowed>suspDays) {

2S. result = price + (fine*daysBorrowed)*3;
26. }

27. if (daysBorrowed>allowDays) {

28. result = price + fine*daysBorrowed;
29. }

30. }

31. return result;

32.1%

Listing 5. Oracle result automatically generated.

public void testReturnBook_test(){

//Ask the data from DataPool

Vector<ValueSet> v = returnBook_Datapool.getreturnBook_test();
BorrowerStates oracle = null;

for(ValueSet vs:v){

//Get the data for test case input
String clientds_returnBook = (String) vs.getValue("clientds_returnBook");
10. String copyds_returnBook = (String) vs.getValue("copyds_returnBook");

WO wWwN e

12. //Get the data for oracle input

13. Borrowing bds_oracleInput = (Borrowing) vs.getValue("bds_oraclelnput");

14.

15. //Get the expected result from the oracle

16. String stateds_returnBook = oracle.BorrowerStates_oracle_state(bds_oraclelnput);
17. Integer amountds_confirmReturn = oracle.BorrowerStates_oracle_result(bds_oraclelnput);
18.

19. //Call returnBook in SUT

20. String state = returnlnterface.returnBook(clientds_returnBook, copyds_returnBook);
21.

22. //Validation Action for returnBook

23, assertTrue(stateds_returnBook.equals(state));

24.

25. //Call confirmReturn in SUT

26. Integer amount = returnInterface.confirmReturn();

27.

28. //Validation Action for confirmReturn

29. assertTrue(amountds_confirmReturn.equals(amount));

30. }

31.}%

Listing 6. JUnit automatically generated test code with oracle.

B.P. Lamancha et al./Information and Software Technology 55 (2013) 301-319 313

Iteration 1 Iteration 2

Alarcos Group Alarcos Group

Researcher

SerLab Group SerLab Group
Researched
Object Monica Maobile Monica Mobile
Reference SER&Practices SER&Practices
group developers developers
Stakeholder SER&Practices SER&Practices
. Methodology for Metl?odologv.for rrjodel-
Subject . . driven testing with
model-driven testing i
oracle automation
Place Bari, Italy Bari, Italy
Year 2010 2011

Fig. 16. Iterations in the case study.

applied in several research projects since more than 10 years ago
(we documented one of our first experiences in [25]).

The roles of Action-Research are: Researcher (person or group of
people who actively carry out the research process), Researched
object (the problem to solve), Critical reference group (group on
which research is performed in as much as it has a problem that
needs to be solved), and the Stakeholder (anyone that can benefit
from the research but does not directly participate in it) [26]. For
this research, two main iterations were conducted (Fig. 16). The
first iteration applies the model-driven testing framework ex-
plained in Section 4. The second iteration adds the oracle automa-
tion proposal. The reference group was composed by the
development team of Monica Mobile and the direction board of
Ser & Practices.

Collecting evidence: Data is collected mainly through inter-
views, analysis of design models and study of the application code.
The test models and test cases were automatically obtained using
model transformations. The Ser & Practices company gave feed-
back on the results.

Monica Mobile is a sensor system. Along the truck there are sev-
eral nodes, and each node has up to five sensors to measure the
temperature, pressure, humidity and concentrations of CH4 and
CH6 gases. Via bluetooth, the nodes periodically send the sensor
data to a smart phone in front of the driver (Fig. 17).

The icons on the screen change their colour (green, yellow, red)
depending on the information received: when the measurements
are within their limits, the icons are green; if an alert is received
from a specific sensor, the corresponding icon turns to red; if a

Temperature Atm. pressure
Rel. Humidity CHA Gas
CH6 Gas

Fig. 17. Sensor interface in Monica Mobile.

message of no alert is received after an alert, then it goes to yellow.
When a normal measurement is received, it goes back from yellow
to green. The data are also sent via GPRS to a remote central ma-
chine, although this functionality is beyond the scope of this paper.

The functionality in charge of processing messages is Process
Packet. It is called each time a package is sent from the sensor sys-
tem. The package consists of a byte string of variable length and
has information about measurements in each sensor, as well as
one byte (the 19th) that identifies the package type. There are four
types:

e Announce (code 0 x 01): this is the first package sent by the
sensor system when it is turned on. It contains information
about the types of the sensors, the number of nodes and the
numbers of sensors in each node for a truck.

DataSens (code 0 x 03): this type of package is sent periodically
and contains information about the measurements for each sen-
sor and node. The measurements in this package are within the
tolerable limits.

o AlertSens (code 0 x 05): this type of package is sent when one
or more sensors are in alert. It contains information about the
node, the sensor and the anomalous measure.

NoAlertSens (code 0 x 07): this type of package is sent when
one or more sensors that were in alert are now in normal
situation.

Fig. 18 describes an excerpt from the Process Packet functional-
ity. Due to space limitations, not all the types of packages are
shown, only the DataSens type. In this case, the data for each sen-
sor are updated and the interface is refreshed by a call to the
RefreshSensorForm method.

The behaviour of the responses to sensor measurements is eas-
ily modelled as a state machine: as noted above, they can be green,
yellow or red, depending on the sequence of the packages received.
Fig. 19 shows the corresponding UML state machine.

Guards in each transition in Fig. 19 take into account the pack-
age type that was sent. The effect compares the image that is
shown in the interface (Fig. 17) with the expected one. Fig. 19 also
shows the TestPrecondition where the Input, Output, Variables and
State for the oracle are defined.

Following the steps defined in Section 3 to obtain the oracle
method using a model-to-text transformation, the UML state ma-
chine for the Sensor oracle was transformed to C# code (which is
the code in which Monica Mobile was developed). The MOFScript
transformation generates the SensorOracle class with two meth-
ods. Listing 7 shows one of them, the Sensor_oracle_result method,
which returns whether the image from each sensor is the expected
one. Also, the MOFScript transformation generates the Sensor_ora-
cle_state method (not shown here), which returns the resulting
state for the sensor after the package is received.

In general, the terminology to produce the oracle method head-
er is: state machine name + “_oracle” + “_XXX", where XXX can be
state or result. Then, for the Sensor state machine (Fig. 19), the
methods obtained are: Sensor_oracle_state and Sensor_oracle_result.

Now, the oracle methods are ready to be used. The Model-
Driven Framework will be applied with the automated test oracles
to test Monica Mobile (see Fig. 5). The first step is to execute the
QVT transformation to the sequence diagram in Fig. 18 to obtain
the test case procedure (see Fig. 20). ProcessPacket functionality
does not return a result. Then, the comparison of the expected re-
sult with the obtained one (which is automatically generated with
the «Validation Action>>>) is not possible. In this case, the tester
needs to add a UML Comment stereotyped <Test Postcondition>>
to add information about the oracle. Fig. 20 shows the UML com-
ment attached to the ProcessPacket functionality. It iterates for
all sensors in each node; then, it calls the oracle methods in the

314 B.P. Lamancha et al./Information and Software Technology 55 (2013) 301-319

] ProcessPacket

| % siSensorSystem | |] this:FrmMain |

1: processPacket { Packet) l

| QhexEndeng:HexEncoding

opk

[if (pkkType % (x03)]
1: DataSensPkk (Packet)

l 2: Pacchetto ()

] pacchetto:Pacchetto |

loop l

!
|
|
|
3"l] dataSensPkk:DataSensPkt | |
|
|
|
I

1: ToString { bytes)

2: ToString (-) U

3: ConvertiMisura (nodelndex, sensorIndex, measure)

12 RefreshSensorForm (pktTvLe)

3: processPacket { -)

freesseenseeenase |

I
i
|
|
|
|
|
|
| [0,while ({Packet[i] != nxff)&aa.(i<Packet.LenJh -1
|
|
|
|
I
I
I

Fig. 18. Excerpt of process packet functionality.

SensorOracle class and uses the Assert function of NUnit to check
whether the test passes or fails. This comment is copied to the Pro-
cessPacket_test in the QVT transformation as a UML Comment.
When the MOFScript transformation is later executed, the informa-
tion in the UML Comment is pasted at the end of the NUnit test
case.

To obtain the NUnit code to test ProcessPacket, the MOFScript
transformation that has the test procedure in Fig. 20 as input is
executed.

Listing 8 shows the code of the automatically generated test.
The meaning of the test case in Fig. 8 is the following:

e Obtain test data from dataPool: Lines 1-6. The dataPool returns
an array with all the packets stored for this test case (test
inputs).

o Execute the functionality in SUT: The processPacket is executed
in line 8, with the test data Packet as parameter.

e Obtaining the test case verdict: In this case, the verdict is calcu-
lated using the information in the UML Comment and appears
in lines 9-20.

Analysis of collected data: The number of test cases fully auto-
mated, the number of test cases obtained with the expected result
automatically generated and the number of defects obtained were
studied, combined with qualitative analysis.

ProcessPacket is one of the main functionalities in Monica Mo-
bile and must be automated, since manual testing is quite time-
consuming. New versions are planned and regression testing for
them must ensure the product quality in a reasonable time: for
example, new sensors will be incorporated to measure the radioac-
tivity of the truck load. The functionality process packet handles

four types of packages: announce, dataSens, alert and no alert. Each
type of message corresponds to one scenario for the functionality.
The same oracle method used to test the dataSens packet was used
to test the other types of packets. For the types of packet announce,
alert and no alert, we automatically generated the test case proce-
dure following the same steps in the model-driven framework that
we used for the dataSens packet. Once the test procedure and the
test oracle method were obtained, these test cases could be exe-
cuted with several different input data.

Table 1 shows, for each type of packet, the number of different
test inputs used to test it. Announce, the first message that arrives
to the system, was tested with five different packets as input. One
test case procedure was generated for this type of packet. Finally,
for each test input, the test procedure was executed, calling the
oracle methods to calculate the expected result. For each test input,
a complete test case was executed, composed of the test input, test
procedure, expected result and the validation of the expected ver-
sus the actual result obtained from the SUT. The same occurs with
the other types of packets.

Table 2 summarises the results obtained by automating the
functionality Process Packet in Monica Mobile system. Two oracle
methods were automatically generated from the UML state ma-
chine; four scenarios were tested, one for each type of packet.
For each scenario, represented by a sequence diagram, first, the
test model was automatically generated and then, the code for
the test case procedure with the oracle method was obtained.
The four test case procedures were executed in the system with
85 different input data. This number was obtained by adding the
test cases executed for each type of packet (see Table 1). Finally,
the number of defects found in the system as result of executing
the test cases were 14.

B.P. Lamancha et al./Information and Software Technology 55 (2013) 301-319

315

T2[PktType == 0x07]fimage == greenImg

<<TestOracle>:
(#Sensor

T1[PktType == 0x03]fimage == greenImg
@ Effect1

Effect2

T[PktType == 0x05)fimage == redImgq

T7[PktType == 0x01)fimage == redImg
@ Effect?

TS[PktType == 0x05)fimage == redImg

Effect

@@ Effeats

«precondition, postconditionx»

«precondition, postcondition»

G Green

T12[PktType == 0x05]fimage == yellowlImg

{

@ Effectiz

T3[PktType == 0x01]fimage == greenlmg

G Red

T8[PktType == 0x03]/image == redImg

[

@ Effects

@ Effect3

T4PktType == 0x03]fimage == greenImg

«precondition, postcondition »
G Yellow

T9[PktType == 0x07]fimage == yellowlImg

@ Effectd

T11[PktType == 0x07}jimage == yellowImg

@ Effect

T10[PktType == 0x01]fimage == yellowImag

& Effect1l

@ Effect10

[2) «TestPrecondition»

<Output> Boolean </Qutput>
<Variable>
string PxtType = Packet[19];

ImageButton image = frm.getImage{node, sensor);

ImageButton redimg = frm.getimagelist_vga.lmages|2]:
</Variable>

<Input> byte[] Packet, frmMain frm, int node, int sensor </Input>

ImageButton greenlmg = frm.getimagelist_vga.lmages|0]:
ImageButton yellowimg = frm.getimageList_vga.lmages|1];

<State> string prestate = frm.getState(node, sensor); </State>

AN

Fig. 19. UML state machine for a sensor.

Without using the automated oracle procedure, the testers need
to calculate the expected result for each data input and to store it
in the dataPool. This is a manual process that takes time and is er-
ror prone. Moreover, in this case study, the developers of Monica
Mobile have no documented test cases, so being very difficult the
comparison with our approach.

Table 3 shows the time involved in executing the model trans-
formations to obtain the test cases. The transformation that ob-
tains the test model is a model-to-model transformation
implemented using mediniQVT language and takes 146 ms. The
transformation to obtain the test case procedure is a model-to-text
transformation implemented using MOFScript and takes 120 ms.
The oracle procedure is obtained using a model-to-text transfor-
mation that takes a UML state machine and returns the oracle
method and takes 93 ms. In summary, transformations take less
than one second.

If the UML state machine used to obtain the oracle procedure
has an error or if the UML models used to obtain the test cases
changes, the transformation could be re-run and the test model,
test code and oracle procedure is obtained again.

In summary, with the addition of the oracle information to the
test case scenario, we obtained an executable test case that can be
run using the NUnit framework each time that a new version of
Monica Mobile is released. This regression testing ensures that
the functionality does not decrease in quality when changes to
the application are made.

Obviously, this approach is not the “magical method”, valid for
all systems that, for Bertolino [10], is the “ideal oracle”. But it con-
stitutes an important advance for automating the test oracle gen-

eration in the emergent model-driven paradigm. In particular, it
is specially applicable to systems or functionalities whose behav-
iour is suitable to be described with UML state machines. As well
as the source code of a program may contain errors, the model it-
self can also be erroneous: but, since test models are automatically
obtained from design models and test code is automatically ob-
tained from test models through model transformation, the meth-
odology keeps the traceability between design models, test models
and test code, preserving the correspondence between abstraction
levels. This traceability also provides maintainability, since when a
change occurs and the design models are modified, transforma-
tions are re-executed and test models and test code are automati-
cally obtained again.

7. Related works

Related works can be divided into three categories: oracle auto-
mation, use of state machines for testing and model-driven testing.

Oracle automation: One of the most important tasks in soft-
ware testing is the definition of the oracle. In the last decade
(2001 and 2009), two surveys analysing the oracle problem in
depth were published [12,19], highlighting in both cases the chal-
lenges inherent in automation.The main approaches in oracle auto-
mation are summarised below:

Richardson [27] proposes several levels of test oracles, one for
checking the range of the values of variables, and the other using
specification-based testing. Memon et al. [28] developed an auto-
mated GUI test oracle, using formal models that represent the

316

B.P. Lamancha et al./Information and Software Technology 55 (2013) 301-319

public Boolean Sensor_oracle_result(byte[] Packet, frmMain frm, int node, int

sensor){

byte PktType = Packet[19];
ImageButton image = frm.getImage(node, sensor);

ImageButton greenImg = frm.getImagelList_vga.Images[@];
ImageButton yellowImg = frm.getImagelist_vga.Images[1];

ImageButton redImg = frm.getImagelist_vga.Images[2];
string prestate = frm.getState(node, sensor);
if (prestate.Equals("Green”)){
if (PktType == @x01){
result = (image == greenImg);}
if (PktType == @x83)({
result = (image == greenImg);}
if (PktType == 9x87){
result = (image == greenImg);}
if (PktType == 8x85){
result = (image == redImg);}

}
if (prestate.Equals(“Yellow")){
if (PktType == @x85){
result = (image == yellowImg);}
if (PktType == @x081){
result = (image == yellowImg));}
if (PktType == @x87){
result = (image == yellowImg);}
if (PktType == 8x83){
result = (image == greenImg);}
}
if (prestate.Equals(“Red”)){
if (PktType == @x83){
result = (image == redImg);}
if (PktType == @x81){
result = (image == redImg);}
if (PktType == ©x85){
result = (image == redImg);}
if (PktType == @x87){
result = (image == yellowImg);}
}

return result;

=4 ProcessPacket_testJ

Listing 7. C# code generated for the SensorOracle.

[£] processPacket_TComponent:«TestCo... = processPacket_DataPool:«DataPool»

ProcessPacket_DataPool

1: ds_processPacket { -) |

3: processPacket (Packet)

«5UT»
Q FrmMain:FroMain

4: processPacket (-) |.

[=) «TestPoscondition»

arraylist nodes = frmMain.getNodes();
arraylist sensors;
for (int i=0; i<nodes.Count; i++){
sensors = nodes.getSensors();
for (int j=0; j<sensors.Count; j++){

Boolean imgResult = SensorOracle.Sensor_oracle_result(frmMain, i, j);
string stateResult = SensorOracle.Sensor_oracle_state(frmMain, i, j);

Assert(imgResult);
AssertEquals(stateResult, frmMain.getState(i,j);

Fig. 20. Test behaviour for process packet functionality.

B.P. Lamancha et al./Information and Software Technology 55 (2013) 301-319 317
1. public void ProcessPacket_test() {
2. //Call dataSelector in DataPool
3. List<ValueSet> v = processPacket_dataPool.ds_ProcessPacket();
4. for (int 1 = 8; i < v.Count; i++){
S. ValueSet vs = v[i];
6. byte[] Packet = (byte[])vs.getValue("Packet™);
7. f//Call suT
8. frmMain.processPacket(ref Packet);
9. /fUML Comment
10. arraylList nodes = frmMain.getNodes();
11. arraylList sensors;
12. for (int i=8; i<nodes.Count; i++){
13. sensors = nodes.getSensors();
14, for (int j=@; j<sensors.Count; j++){
15. Boolean imgResult = SensorOracle.Sensor_oracle_result(Packet, frmMain, i, j);
16. string stateResult = SensorOracle.Sensor_oracle_state(Packet, frmMain, i, j);
17. Assert(imgResult);
18. AssertEquals(stateResult, frmMain.getState(i,j);
19. }
20. }
21.)
22, }

Listing 8. NUnit code to test ProcessPacket functionality.

Table 1
Types of process packet with expected results generated for Monica Mobile.

Type of packet Test input Test case procedures Test cases obtained

Announce 5 1 5
DataSens 40 1 40
Alert 20 1 20
No alert 20 1 20
Table 2
Test elements generated for Monica Mobile.
Test oracle methods 2
Scenarios tested 4
Test case procedures 4
Test cases with expected results 85
Defect founds 14

Table 3

Time involved in executing model transformations.
Model-to-model transformation to obtain test model 146 ms
Model-to-text transformation to obtain test case procedure code 120 ms

Model-to-text transformation to obtain test oracle procedure code 93 ms

GUL The expected state is derived from the formal model and the
test case actions. Xie and Memon [20] defined a technique to
declaratively specify differents types of automated GUI test oracles
and used it in a controlled experiment.

The approach found in the work by Manolache and Kourie [29]
for oracle automation is based on various implementations of a
program that implements the same functionalities (N-versions
diverse systems) and are used later as test oracles. Last et al. [30]
uses an input-output analysis of execution data automated by
the IFN (Info-Fuzzy Network) methodology of data mining. This ap-
proach uses previous versions of the SUT to obtain the expected
outputs. Vanmali et al. [31] use an artificial neural network as an
automated oracle that is trained on a set of test cases applied to
the original version of the system. The network training is based
on the “black-box” approach, since only inputs and outputs of
the system are presented to the algorithm, which is later used as
an artificial oracle.

Shahamiri et al. [32] also use artificial neural networks as an
automated oracle to test decision-making structures (using nested
if-then-else structures). The network is modelled using a training
dataset generated based on software specifications and domain ex-
pert knowledge.

In summary, most of the existing approaches that automate test
oracles uses previous versions of the SUT and are thus only appli-
cable in regression testing. Other proposals require formal models
that represent the SUT. In our work, a UML metamodel is used to
describe SUT behaviour, UML state machines are used to oracle
representation, augmented using an UML Profile. This approach
can be used for testing during development and also in regression
testing. Furthermore, UML is a widely accepted standardised nota-
tion that allows designers and testers to share the same notation.

Later works have made proposals to solve this problem using
artificial neural networks [33,34], metamorphism [35,36], formal
approaches [37], etc.

State Machines applied to testing: Using finite state machines
for test data generation is not new. Finite state machines, extended
state machines and, recently, UML state machines are used for test-
ing. The work by Lee and Yannakakis [38] still is a good reference
to have a good overview of this area.

In general the literature uses state machines for testing for two
proposes: (i) to generate test cases (ii) to generate the data input
and, in some cases, data output as well. These proposals are sum-
marised below:

e State machines to generate test cases: These approaches are
based on deciding how the transitions can be tested and several
coverage criteria were defined. Chow [39] defines the W-
method for finite state machines, which generates a transition
tree using full tree paths as testing coverage. This was later used
for state machines by Binder [40] who called it a round-trip
path. Offut and Abdurazik [41] and Offut et al. [42] define crite-
ria for the transition coverage level for UML state machines
(transition coverage, full predicate coverage, transition-pair
coverage and complete sequence). Kim et al. [43] transformed
UML state machines into an Extended Finite State Machine to
use conventional control flow analyses, obtaining test cases
from paths. Kim et al. [44] generates test sequences from state
charts for concurrent systems in Java. Mouchawrab et al. [45]
use round-trip paths testing applied to UML state machines

318 B.P. Lamancha et al./Information and Software Technology 55 (2013) 301-319

for class clusters as a test strategy and compare it with struc-
tural testing through a controlled experiment.

State machines to generate test data: These works are related to
obtaining test data for test cases. The test data input includes
the initial state and the values for the variables used in the
guards and effects in the transitions. One of the first methods
to derive test data using finite state machines was presented
by Chow [39] and was later applied to a UML state machine
by Lliuying and Zhichang [46]. Hong et al. [47] and Offut et al.
[42] present general criteria to obtain test input from state-
based specifications. Chevalley and Thevenod [48] adapt a prob-
abilistic method, called statistical functional testing, for the
generation of test cases from UML state diagrams, using transi-
tion coverage as the testing criterion. Briand et al. [49] use oper-
ation contracts and transition guards written with the Object
Constraint Language (OCL) to derive input and output test data.

Existent approaches for state machines applied to testing focus
mainly on test case procedures and test data, but none of them
generates procedures to obtain the decision about the test oracle,
i.e, whether the expected and actual results are equal as our re-
search does.

Model-driven testing: Many proposals for model-based testing
exist [15,14], but few of them focus on automated test model gen-
eration using model transformations. Dai [50] describes a series of
ideas and concepts to derive UML-TP models from UML models,
which are the basis for a future model-based testing methodology.
Test models can be transformed either directly to test code or to a
platform specific test design model (PST). After each transforma-
tion step, the test design model can be refined and enriched with
specific test properties. However, to the best of our knowledge, this
interesting proposal has no practical implementation for any tool.
Baker et al. [51] define test models using UML-TP. Transformations
are done manually instead of using a transformation language.
Naslavsky [52] uses model transformation traceability techniques
to create relationships among model-based testing artefacts during
the test generation process. They adapt a model-based control flow
model, which they use to generate test cases from sequence dia-
grams. They adapt a test hierarchy model and use it to describe a
hierarchy of test support creation and persistence of relationships
among these models. Although they use a sequence diagram (as
does this proposal) to derive the test cases, they do not use it to de-
scribe test case behaviour. Javed [53] generates unit test cases
based on sequence diagrams. The sequence diagram is automati-
cally transformed into a unit test case model, using a prototype
tool based on the Tefkat transformation tool and MOFScript for
model transformation. This work is quite similar to ours, but they
do not use the UML-TP. We generate the unit test case in two steps
while they use only one. We think that using an intermediate mod-
el with UML-TP as PIT is more appropriate for an MDE approach,
due that the same test model could be used to test different plat-
forms (i.e. to test differents PSM), later the test code is generated
for each specific platform to execute the test cases.

8. Conclusions

In this paper, we proposed an approach allowing the test oracle
generation, automating two important steps in the test oracle: the
expected output and its comparison with the actual output. We de-
scribed an automated testing framework to support the test case
automation. This framework takes the models that describe the
system as input, using UML notation and derives from them the
test model and then the test code, following a model-driven ap-
proach. As a result, a complete executable test case is obtained,
with the following information:

e Parametrized input test data: The tester stores the input test
data in the dataPool and the test case automatically retrieves
it. The operation in the dataPool returns all the test input for
the test case and the test case is executed for each set of inputs.

e Obtaining the expected result in an automated fashion: This
part of the test oracle is automatically obtained from the UML
state machine. As a result, two methods are obtained to gener-
ate the expected result and the expected state.

e Test case procedure: The test case procedure is automatically
generated from the sequence diagram that represents the func-
tionality to test and uses the information about the test input
and the expected result. The test case procedure focuses on
functional testing. Then, the interaction between the system
and the actors is tested. As result, a method is obtained in xUnit
that calls the test input in the dataPool, calls the operations to
test in the SUT with the test input, uses the oracle methods to
calculate the expected result and finally, validates whether
the expected result is equal to the actual one using the Assert
sentence in xUnit.

The approach has been applied to a Library system coded in Java
language and an industrial project coded in C# language.

We are currently generating test cases at functional level. In the
future, we will extend our framework to obtain test cases at inte-
gration and unit level. Current work includes adding functional test
cycles to the framework. By using the information in the UML State
Machine, we can derive the order in which the functionalities must
be called to be tested, taking into account the previous and post-
state of the SUT. Future work includes the extension of our ap-
proach to handle complex types in UML state machine likes data
structures or collections, to obtain the test oracle from it.

Acknowledgments

This research was financed by the projects: DIMITRI (Ministerio
de Ciencia e Innovacin, grant TRA2009_0131) and the project
PEGASO/MAGO (TIN2009-13718-C02-01) from MICINN and
FEDER. Pfez has a doctoral Grant from JCCM, Orden de 13-11-2008.

References

[1] S.R. Dalal, A. Jain, N. Karunanithi, .M. Leaton, C.M. Lott, G.C. Patton, B.M.
Horowitz, Model-based testing in practice, in: Proceedings of the International
Conference on Software Engineering, 1999, pp. 285-294.

[2] IEEE, IEEE Standard Glossary of Software Engineering Terminology, Tech. rep.,
IEEE, 1990.

[3] T. Mens, P. Van Corp, A taxonomy of model transformation, Electronic Notes in
Theoretical Computer Sciences 152 (2006) 125-142.

[4] B. Pérez Lamancha, P. Reales Mateo, 1. Garcia, M. Polo Usaola, M. Piattini,
Automated model-based testing using the uml testing profile and qvt, in:
International Workshop on Model-Driven Engineering, Verification and
Validation, ACM, Denver, Colorado, 2009, pp. 1-10.

[5] B. Pérez Lamancha, M. Polo, M. Piattini, An automated model-driven testing
framework for model-driven development and software product lines, in:
International Conference on Evaluation of Novel Approaches to Software
Engineering, SciTePress, Athens, Greece, 2010, pp. 112-121.

[6] B. Pérez Lamancha, P. Reales Mateo, M. Polo Usaola, D. Caivano, Model-driven
testing: transformations from test models to test code, in: International
Conference on Evaluation of Novel Approaches to Software Engineering,
SciTePress, Beijing, China, 2011.

[7] OMG, Unified Modeling Language, Superstructure Specification, Tech. Rep.
formal/2007-11-02, OMG, 2007.

[8] OMG, UML Testing Profile Version 1.0, Tech. Rep. formal/05-07-07, OMG, July
2005 2005.

[9] B. Beizier, Black-Box Testing: Techniques for Functional Testing of Software
and Systems, John Wiley & Sons, 1995.

[10] A. Bertolino, Software Testing Research: Achievements, Challenges, Dreams,
in: Workshop on the Future of Software Engineering, IEEE Computer Society,
2007, pp. 85-103.

[11] A. Abran, P. Bourque, SWEBOK: Guide to the Software Engineering Body of
Knowledge, IEEE Computer Society, 2004.

[12] L. Baresi, M. Young, Test Oracles, Tech. Rep. Technical Report CIS-TRO1 -02,
Dept. of Computer and Information Science, Univ. of Oregon, 2001.

B.P. Lamancha et al./Information and Software Technology 55 (2013) 301-319 319

[13] H. Gomaa, Designing concurrent, distributed, and real-time applications with
UML, in: International Conference on Software Engineering, ACM, 2006, pp.
1059-1060.

[14] A.C. Dias Neto, R. Subramanyan, M. Vieira, G.H. Travassos, A survey on model-
based testing approaches: a systematic review, in: Workshop on Empirical
Assessment of Software Engineering Languages and Technologies, ACM, 2007,
pp. 31-36.

[15] M. Prasanna, S. Sivanandam, R. Venkatesan, R. Sundarrajan, A survey on
automatic test case generation, Academic Open Internet Journal 15 (2005) 1-5.

[16] OMG, Mof Query/View/Transformation Specification, Tech. rep., OMG, 2007.

[17] OMG, Mof Model to Text Transformation Language, Tech. Rep. formal/2008-
01-16, OMG, 2008.

[18] K. Beck, Kent Beck’s Guide to Better Smalltalk: A Sorted Collection, vol. 14,
Cambridge Univ. Pr., 1999.

[19] S. Shahamiri, W. Kadir, S. Mohd-Hashim, A comparative study on automated
software test oracle methods, in: International Conference on Software
Engineering Advances, IEEE, 2009, pp. 140-145.

[20] Q. Xie, A. Memon, Designing and comparing automated test oracles for gui-
based software applications, ACM Transactions on Software Engineering and
Methodology (TOSEM) 16 (1) (2007) 4-24.

[21] P. Runeson, M. Host, Guidelines for conducting and reporting case study
research in software engineering, Empirical Software Engineering 14 (2)
(2009) 131-164.

[22] R. Yin, Case study research: design and methods, Applied Social Research
Methods Series 5 (2003).

[23] R. McTaggart, Principles for participatory action research, Adult Education
Quarterly 41 (3) (1991) 168.

[24] D. Avison, F. Lau, M. Myers, P. Nielsen, Action research, Communications of the
ACM 42 (1) (1999) 94-97.

[25] M. Polo, M. Piattini, F. Ruiz, Using a qualitative research method for building a
software maintenance methodology, Software: Practice and Experience 32
(13) (2002) 1239-1260.

[26] Y. Wadsworth, What is participatory action research, Action Research
International 2 (1998) 1-18.

[27] D. Richardson, Taos: testing with analysis and oracle support, in: International
Symposium on Software Testing and Analysis, ACM, 1994, pp. 138-153.

[28] A. Memon, M. Pollack, M. Soffa, Automated test oracles for guis, ACM SIGSOFT
Software Engineering Notes 25 (6) (2000) 30-39.

[29] L. Manolache, D. Kourie, Software testing using model programs, Software:
Practice and Experience 31 (13) (2001) 1211-1236.

[30] M. Last, M. Friedman, A. Kandel, The data mining approach to automated
software testing, in: International Conference on Knowledge Discovery and
Data Mining, ACM, 2003, pp. 388-396.

[31] M. Vanmali, M. Last, A. Kandel, Using a neural network in the software testing
process, International Journal of Intelligent Systems 17 (1) (2002) 45-62.

[32] S. Shahamiri, W. Kadir, S. Ibrahim, An automated oracle approach to test
decision-making structures, International Conference on Computer Science
and Information Technology, vol. 5, IEEE, 2010, pp. 30-34.

[33] H. Jin, Y. Wang, N. Chen, Z. Gou, S. Wang, Artificial neural network for
automatic test oracles generation, International Conference on Computer
Science and Software Engineering, vol. 2, IEEE, 2008, pp. 727-730.

[34] M. Ye, B. Feng, L. Zhu, Automated oracle based on multi-weighted neural
networks for gui testing, Information Technology Journal 6 (3) (2007) 370-
375.

[35] A. Gotlieb, B. Botella, I. IRISA, F. Rennes, Automated metamorphic testing, in:
International Conference on Computer Software and Applications, 2003, pp.
34-40.

[36] J. Mayer, R. Guderlei, An empirical study on the selection of good metamorphic
relations, in: Proceedings of Computer Software and Applications Conference,
COMPSAC, 2006, pp. 475-484.

[37] T. Xie, Augmenting automatically generated unit-test suites with regression
oracle checking, Lecture Notes in Computer Science 4067 (2006) 380.

[38] D. Lee, M. Yannakakis, Principles and methods of testing finite state machines
- a survey, Proceedings of the IEEE 84 (8) (1996) 1090-1123.

[39] T. Chow, Testing software design modeled by finite-state machines, IEEE
Transactions on Software Engineering 3 (3) (1978) 178-187.

[40] R. Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools,
Addison-Wesley Professional, 2000.

[41] J. Offutt, A. Abdurazik, Generating Tests From UML Specifications, in:
Conference on Unified Modeling Language, Springer, 1999. p. 76.

[42]]. Offutt, S. Liu, A. Abdurazik, P. Ammann, Generating test data from state-
based specifications, Software Testing, Verification and Reliability 13 (1)
(2003) 8.

[43] Y. Kim, H. Hong, D. Bae, S. Cha, Test cases generation from UML state diagrams,
in: Software, IEE Proceedings, vol. 146, IET, 1999, pp. 187-192.

[44] S. Kim, L. Wildman, R. Duke, A UML approach to the generation of test
sequences for java-based concurrent systems, in: Software Engineering
Conference, 2005. Proceedings 2005 Australian, IEEE, 2005, pp. 100-109.

[45] S. Mouchawrab, L. Briand, Y. Labiche, M. Di Penta, Assessing, comparing, and
combining state machine-based testing and structural testing: a series of
experiments, IEE Transactions on Software Engineering 37 (2011) 161-187.

[46] L. Liuying, Q. Zhichang, Test selection from UML statecharts, in: Conference on
Technology of Object-Oriented Languages and Systems, IEEE, 1999, pp. 273-
279.

[47] H. Hong, I. Lee, O. Sokolsky, S. Cha, Automatic test generation from statecharts
using model checking, in: Workshop on Formal Approaches to Testing of
Software, BRICS Notes Series, 2001, pp. 15-30.

[48] P. Chevalley, P. Thévenod-Fosse, Automated generation of statistical test cases
from UML state diagrams, in: International Computer Software and
Applications, IEEE, 2001, pp. 205-214.

[49] L. Briand, Y. Labiche,]. Cui, Automated support for deriving test
requirements from UML statecharts, Software and Systems Modeling 4 (4)
(2005) 399-423.

[50] Z. Dai, Model-driven testing with UML 2.0, Canterbury, England, 2004.

[51] P. Baker, Z. Dai,]. Grabowski, I. Schieferdecker, O. Haugen, C. Williams, Model-
Driven Testing: Using the UML Testing Profile, Springer, 2007.

[52] L. Naslavsky, H. Ziv, D.J. Richardson, Towards traceability of model-based
testing artifacts, in: International Workshop on Advances in Model-Based
Testing, ACM, London, United Kingdom, 2007, pp. 105-114.

[53] A. Javed, P. Strooper, G. Watson, Automated generation of test cases using
model-driven architecture, in: International Workshop on Automation of
Software Test, IEEE Computer Society, 2007.

	Automated generation of test oracles using a model-driven approach
	1 Introduction
	2 Model-driven testing framework
	2.1 Metamodels
	2.2 Transformations

	3 Oracle automation problem
	4 MDT framework enhanced with test oracles
	4.1 Running example: library system
	4.2 Test model generation
	4.3 Test code generation
	4.4 Test oracle motivation

	5 Automated test oracle implementation
	5.1 UML profile for oracle determination
	5.2 Transformation to obtain oracle methods
	5.3 Actual versus expected result comparison

	6 Case study: Monica Mobile system
	7 Related works
	8 Conclusions
	Acknowledgments
	References

